17ME52

Fifth Semester B.E. Degree Examination, July/August 2022 Dynamics of Machinery

Time: 3 hrs.
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. State the condition of equilibrium of a body subjected to a system of
i) Two forces
ii) Three forces
iii) Two forces and a Torque.
(06 Marks)
b. For the static equilibrium of the four bar mechanism shown in Fig.Q1(b), determine the input toque T_{2} on the link $A B$ for a force of 2000 N on link CD. Dimensions are $\mathrm{AB}=300 \mathrm{~mm}, \mathrm{BC}=455 \mathrm{~mm}, \mathrm{BE}=175 \mathrm{~mm}$.
(14 Marks)

Fig. Q1(b)

2 a. State D'Alembert's principle and its significance.
(06 Marks)
b. In slider crank mechanism, the crank is 300 mm long and connecting rod 850 mm long. The piston is of 90 mm in diameter and gas pressure acting on the piston is 5 MPa . When the crank has moved through 45° from IDC. Find i) Thrust in connecting rod ii) Reaction from guide (piston side thrust) iii) Torque acting on the crank shaft iv) Load on main bearings.
(14 Marks)

Module-2

3 a. Explain Static and Dynamic balancing of rotating masses.
(06 Marks)
b. The four masses A B , C and D having their radius of rotation as $200 \mathrm{~mm}, 150 \mathrm{~mm}, 250 \mathrm{~mm}$ and 300 mm are $200 \mathrm{~kg}, 300 \mathrm{~kg}, 240 \mathrm{~kg}$ and 260 kg in magnitude respectively. The angle between the successive masses are $45^{\circ}, 75^{\circ}$ and 135° respectively. Determine the position and magnitude of the balance mass required, if it's radius of rotation is 200 mm . ($\mathbf{1 4}$ Marks)

OR

4 A four cylinder inline engine has two outer cranks placed at 120° apart and their individual reciprocating masses are 200 kg . The distance between cranks are $200 \mathrm{~mm}, 600 \mathrm{~mm}$ and 500 mm respectively. The crank radius is 300 mm and the length of connecting rod is 1200 mm . The crank rotates at 340 rpm . If the engine is to be in complete primary balance, find the reciprocating masses and the relative angular positions for each of the inner cranks. Also find the magnitude of secondary unbalance force.
(20 Marks)

Module-3

5 a. Define the following terms with respect to working of governors:
i) Sensitiveness
ii) Isochronisms
iii) Stability
iv) Controlling force. (08 Marks)
b. A porter governor has all four arms 300 mm long. The upper arms are pivoted on the axis of rotation and the lower arms are attached to a sleeve at a distance of 35 mm from the axis. Each ball has a mass of 7 kg and the mass of the load on the sleeve is 540 N . Determine the speed of governor at the radius of rotation of the ball is 200 mm and 260 mm .
(12 Marks)

OR

6 a. Derive an expression for Gyroscopic couple $\mathrm{C}=\mathrm{IWWp}$ with usual notations.
(08 Marks)
b. Each wheel of a four wheel, rear engine automobile has a moment of Inertia of $2.4 \mathrm{~kg} \mathrm{~m}{ }^{2}$ and an effective diameters of 660 mm . The rotating parts of the engine have a moment of Inertia of $1.2 \mathrm{~kg} \mathrm{~m}^{2}$. The gear ratio of engine to back axle is $3: 1$. The engine axis is parallel to the rear axle and the crank shaft rotates in the same sense as the road wheel. The mass of the vehicle is 2200 kg and the centre of mass is 550 mm above the road level. The track width of the vehicle is 1.5 m . Determine the limiting speed of the vehicle around a curve with 80 m radius so that all the four wheel maintain contact with the road surface.
(12 Marks)

Module-4

7 a. Derive the equation for natural frequency of the spring mass system considering the mass of the spring into account.
(10 Marks)
b. Evaluate the natural frequency of the system shown in Fig. Q7(b) using Newton's method.
(10 Marks)

Fig. Q7(b)

8 a. Define the following with respect to vibration: i) Natural frequency iii) Damping factor iv) Logarithmic decrement. خ
ii) Resonance
b. A mass of 2 kg is supported on a spring of $3 \mathrm{kN} / \mathrm{m}$ and has a dash pot having damping coefficient of $5 \mathrm{~N} \mathrm{sec} / \mathrm{m}$. If the initial displacement of 8 mm is given, find i) Damped natural frequency ii) Logarithmic decrement iii) Amplitude after 3 cycles.
(12 Marks)

Module-5

9 a. Dérive equation of motion for free damped vibration.
(10 Marks)
b. A gun barrel , weighing 600 kg has a recoil spring of stiffness $345 \mathrm{~N} / \mathrm{mm}$. If the barrel recoils one meter on firing, find : i) The initial recoil velocity of the gun.
ii) The critical damping co-efficient which is engaged at the end of the recoil stroke. Assume no energy is lost in the recoil of the barrel.
(10 Marks)

OR

10 a. Define Logarithmic, Logarithmic decrement and prove that Logarithmic decrement

$$
\mathrm{f}=\frac{2 \pi \xi}{\sqrt{1-\xi^{2}}} \text {, where } \xi \text { is damping ratio. }
$$

(10 Marks)
b. Write a short notes on the following :
i) Magnification factor
ii) Transmissibility.
(10 Marks)

